MENU
  • Online users : 7
  • Online employers : 0
  • Registered members : 5 015
  • Registered companies : 263 008
  • Jobs : 195 935
  • Resumes : 2 544










    Job details

PhD Studentship: Development and manufacturcapability of metamaterials for cavity noise suppression:

Job description:

Qualification Type: PhD
Job location: Southampton
Funding for: UK Students, EU Students, International Students
Funding amount: For UK students, Tuition Fees and a stipend of £16,062 tax-free per annum for 4 years, with a top-up from BAe systems of £5000 per year
Hours: Full Time

Published in: 18th May 2022
Closing date: 31st August 2022

 

 

Project title: Development and manufacturcapability of metamaterials for cavity noise suppression
PhD manager: Paul Murray
managery Team: A.G. Wilson, P.A.S. Reed, J.L.T. Lawrence, and P.B. Murray
Project description
Applications are invited for a fully funded PhD Studentship studying the design of novel metamaterials for the reduction of aerodynamically induced large shallow cavity self-noise for next generation military aircraft. You will join a world-leading research team located within the Institute of Sound and Vibration Research (ISVR) and the Mechanical Engineering department at the University of Southampton, a member of the Russell Group and ranked in the world's top 100 Universities. This studentship is supported by BAE Systems - Air, who also offer a 3 month industrial placement.
Grazing airflow across large shallow open cavities can create self-sustained oscillations producing high levels of acoustic energy, particularly at low frequencies (sub 150Hz). These present significant design challenges to aircraft structures, systems, and cavity contents. Designing to survive this environment adds significant weight to aircraft structures, increasing fuel usage and reducing performance.
There is significant potential to reduce cavity noise at source with passive acoustic liner concepts, both to disrupt the efficiency of the acoustic feedback mechanism and to absorb sound. However, low frequency liners typically require larger dimensions and mass. As such, two key goals of this project will be to design novel cavity geometries and to establish the practiccapability of using metamaterials to permit efficient low-frequency attenuation in a much-reduced space envelope.
You will begin this project by testing scaled 3D-printed cavities using the ISVR's Doak Resonance Rig (pictured above), measuring the noise levels generated all over the cavity at differing flow conditions. In parallel, you will perform computational aero-acoustic modelling of the flow-induced source. The validated modelling approach will also be used to predict the full-scale self-noise source. You will then design and test a range of potential traditional and novel cavity liner designs, taking advantage of the proven 3D-printing capcapability within the University of Southampton.
Furthermore, in addition to designing novel liner geometries, you will benefit from the practice within the Mechanical Engineering department to design the novel liners with structures optimised both to minimise weight and to enhance transmission loss. The liners must also be able to withstand the static and dynamic loading all over the life of the aircraft.
The studentship funding covers tuition fees (UK/EU rate) and a tax-free stipend for four years. candidates should have a good first degree in physics, mathematics, or a significant engineering subject, and be a UK national. Ideally, the candidate should have some practice in fluid dynamics. It is not necessary to have practice in acoustics to apply. The project is planned to start in October 2022.
Entry Requirements
A very good undergraduate degree (at least a UK 2:1 honours degree, or its international equivalent).
Closing date : 31 August 2022.
Funding: For UK students, Tuition Fees and a stipend of £16,062 tax-free per annum for 4 years, with a top-up from BAe systems of £5000 per year.
How To Apply
Apply online: https://www.southampton.ac.uk/courses/how-to-apply/postgraduate-application s.page, programme type (Research), 2022/23, Faculty of Physical Sciences and Engineering, next page ?PhD Engineering & Environment (Full time)?. In Section 2 you should insert the name of the manager Paul Murray
Applications should include :
   » Curriculum Vitae
   » Two reference letters
   » Degree Transcripts to date
Apply online: https://www.southampton.ac.uk/courses/how-to-apply/postgraduate-application s.page
For more information Contact Us by: feps-pgr-apply@soton.ac.uk

Skills:

Job Category:  [ View All Jobs ]
Language requirements:
Employment type:
Salary: Unspecified
Degree: Unspecified
Experience (year): Unspecified
Job Location: Southampton, Hampshire England
Address: Hampshire
Company Type Employer
Post Date: 05/18/2022 / Viewed 1 times
Contact Information
Company:
Contact Email: feps-pgr-apply@soton.ac.uk


Apply Online